

Length Scales and Time Scales in Peridynamics

Stewart Silling

Multiscale Dynamic Material Modeling Department Sandia National Laboratories Albuquerque, New Mexico

SIAM Conference on Mathematical Aspects of Materials Science Philadelphia, PA

May 24, 2010

Should a material model have a time scale? (1) Homogeneous

• Some materials have a response that is clearly time-dependent. Example: viscoelasticity can be modeled using nonlocality in time:

$$\sigma(t) = E\varepsilon(t) + \int_0^t c(t - t')\dot{\varepsilon}(t') dt'$$

where σ =stress, ε =strain, E is a constant, and c is a (measurable) relaxation function.

• The transition from stochastic processes to continua (e.g., Mori-Zwanzig) can also produce memory terms.

Should a material model have a time scale? (2) Heterogeneous

 Expect there to be some finite relaxation time when a heterogeneous material is suddenly deformed.

• It follows that the effective properties of a homogenized material should reflect this time scale.

Peridynamics

- Peridynamics is an extension of solid mechanics to allow long-range interactions and reduced restrictions on continuity.
- Equation of motion:

$$\rho(\mathbf{x})\ddot{\mathbf{u}}(\mathbf{x},t) = \int_{\mathcal{H}} \mathbf{f}(\mathbf{q},\mathbf{x},t) \ dV_{\mathbf{q}} + \mathbf{b}(\mathbf{x},t)$$

where ρ =density, \mathbf{u} =displacement, \mathbf{b} =body force density, and \mathcal{H} is an interaction volume.

- f is determined by the deformation through a constitutive model.
- Linearized equation of motion (elastic):

$$\rho(\mathbf{x})\ddot{\mathbf{u}}(\mathbf{x},t) = \int_{\mathcal{H}} \mathbf{C}(\mathbf{x},\mathbf{q})(\mathbf{u}(\mathbf{q},t) - \mathbf{u}(\mathbf{x},t)) dV_{\mathbf{q}} + \mathbf{b}(\mathbf{x},t)$$

where C is the *micromodulus* tensor field.

Peridynamics always has a length scale. Does it always have a time scale?

- If \mathcal{H} is bounded, its size provides a length scale (the *horizon*).
- The theory is clearly nonlocal in space.
- We could include nonlocality in time:

$$\rho \ddot{\mathbf{u}} = \int_0^\infty \int_{\mathcal{H}} \mathbf{C}(\mathbf{x}, \mathbf{q}, t - t')) (\mathbf{u}(\mathbf{q}, t') - \mathbf{u}(\mathbf{x}, t')) dV_{\mathbf{q}} dt'$$

in which C has some time scale.

ullet Does the length scale of ${\cal H}$ imply an inherent material time scale in an elastic material?

To find a material time scale: Find the restoring force on a small volume

- Suppose we displace a small volume v of radius ϵ surrounding a point \mathbf{x} through a distance $\mathbf{u}(\mathbf{x})$ while holding the rest of the body fixed.
- $\epsilon \ll \delta$.
- Find the force \mathbf{F} on v.

Restoring force on the small volume

ullet The restoring force on v is

$$\mathbf{F} \approx v \int_{\mathcal{H}} \mathbf{C}(\mathbf{q}) (\mathbf{u}(\mathbf{q}) - \mathbf{u}(\mathbf{x})) dV_{\mathbf{q}}$$
$$= v \int_{\mathcal{H}} \mathbf{C}(\mathbf{q}) (\mathbf{0} - \mathbf{u}(\mathbf{x})) dV_{\mathbf{q}}$$
$$= -v \mathbf{P}(\mathbf{x}) \mathbf{u}(\mathbf{x})$$

where the reaction tensor at \mathbf{x} is defined by

$$\mathbf{P}(\mathbf{x}) = \int_{\mathcal{H}} \mathbf{C}(\mathbf{q}) \ dV_{\mathbf{q}}.$$

• P is symmetric.

Displace the small volume, then let it go

• Newton's second law applied to *v*:

$$\rho v\ddot{\mathbf{u}}(\mathbf{x},t) = \mathbf{F} = -v\mathbf{P}(\mathbf{x})\mathbf{u}(\mathbf{x},t)$$

or

$$\rho \ddot{\mathbf{u}}(\mathbf{x}, t) = -\mathbf{P}(\mathbf{x})\mathbf{u}(\mathbf{x}, t)$$

ullet (We could have gotten this directly from the equation of motion $ho\ddot{\mathbf{u}}=\mathbf{L}+\mathbf{b}.)$

Each point is a linear oscillator (holding other points fixed)

• Assume $\mathbf{u} = a\mathbf{n}e^{i\omega t}$ for some constants ω , a and unit vector \mathbf{n} . Use $\rho\ddot{\mathbf{u}} = -\mathbf{P}(\mathbf{x})\mathbf{u}$.

$$-\rho\omega^2 a \mathbf{n} e^{i\omega t} = -a \mathbf{P}(\mathbf{x}) \mathbf{n} e^{i\omega t}$$
$$\rho\omega^2 \mathbf{n} = \mathbf{P}(\mathbf{x}) \mathbf{n}$$

- So $\rho\omega^2$ is an eigenvalue of $\mathbf{P}(\mathbf{x})$ with eigenvector \mathbf{n} .
- Can show P(x) is symmetric. Let P_0 be its smallest eigenvalue.
- Solve for ω :

$$\omega_0 = \sqrt{\frac{P_0}{\rho}}$$

• Define a material time scale by

$$\tau := \frac{1}{\omega_0}.$$

• This time scale is independent of a, v.

Properties of the peridynamic time scale: Numerical stability

• In the Emu (or PD-LAMMPS) discretization, the numerical stability restriction* on the time step with velocity Verlet time integration is

$$\Delta t \leq \sqrt{2} \ \tau$$

provided $\tau > 0$.

- This is independent of Δx .
- The horizon provides the length scale instead of the discretization.

$$\int_{\mathcal{H}} \mathbf{C}(\mathbf{x}, \mathbf{q})(\mathbf{u}(\mathbf{q}) - \mathbf{u}(\mathbf{x})) \ dV_{\mathbf{q}} \approx \sum_{k \in \mathcal{H}_i} \mathbf{C}(\mathbf{x}_k, \mathbf{x}_i)(\mathbf{u}_k - \mathbf{u}_i) \Delta V_k$$

* SS and Askari, Computers and Structures, 2005.

Properties of the peridynamic time scale: Material stability

- ullet If any of the eigenvalues of ${\bf P}$ are negative, small discontinuities can grow over time.
- This is a "crack nucleation condition*" (something like loss of ellipticity).
- Since $\tau = \sqrt{\rho/P_0}$ can get crack nucleation if the material has an "imaginary material time scale."

Nucleation and growth simulation (Emu)

^{*} SS, Weckner, Bobaru, and Askari, *Intl. J. Frac.*, 2010 (to appear).

Time scale is not uniquely determined by the length scale and elastic modulus

• Young's modulus (1D):

$$E = \frac{1}{2} \int_{-\delta}^{\delta} \xi^2 C(\xi) \ d\xi$$

• Time scale:

$$\tau = \sqrt{\frac{\rho}{\int_{-\delta}^{\delta} C(\xi) \ d\xi}}$$

Simple rescaling of the horizon

- Let δ be the horizon for a given material. Consider a family of linear elastic materials parameterized by a number S>0, such that
 - 1. The horizon of each material is $S\delta$, and
 - 2. The strain energy density under any homogeneous deformation $\mathbf{u}(\mathbf{x}) = \mathbf{G}\mathbf{x}$ is independent of S, where \mathbf{G} is any tensor.
- ullet Try to find ${f C}^S$ such that

$$W^{S} = \frac{1}{2} \int_{\mathcal{H}_{S}} (\mathbf{G}\boldsymbol{\xi}) \cdot \left[\mathbf{C}^{S}(\boldsymbol{\xi})(\mathbf{G}\boldsymbol{\xi}) \right] dV_{\boldsymbol{\xi}}$$

does not depend on S.

Relate time scale to a length scale

• Change of dummy variable $\boldsymbol{\xi} = S\boldsymbol{\sigma}$:

$$2W^{S} = \int_{\mathcal{H}_{S}} (\mathbf{G}\boldsymbol{\xi}) \cdot \left[\mathbf{C}^{S}(\boldsymbol{\xi})(\mathbf{G}\boldsymbol{\xi}) \right] dV_{\boldsymbol{\xi}} = \int_{\mathcal{H}} (\mathbf{G}S\boldsymbol{\sigma}) \cdot \left[\mathbf{C}^{S}(S\boldsymbol{\sigma})(\mathbf{G}S\boldsymbol{\sigma}) \right] \left(S^{3}dV_{\boldsymbol{\sigma}} \right)$$

ullet The requirement $W^S=W$ therefore leads to

$$\mathbf{C}^{S}(S\boldsymbol{\sigma}) = S^{-5}\mathbf{C}(\boldsymbol{\sigma}).$$

ullet Similarly, $\mathbf{P}^S:=\int_{\mathcal{H}_S}\mathbf{C}^S(oldsymbol{\xi})\;dV_{oldsymbol{\xi}}$ leads to

$$\mathbf{P}^S = S^{-2}\mathbf{P}.$$

ullet We now know how ${f P}^S$ scales with the size of the interaction region δ .

Relate time scale to a length scale, ctd.

ullet The eigenvalues of ${f P}^S$ must scale the same way:

$$P_0^S = S^{-2} P_0$$

• so the material time scale is

$$\tau^S := \sqrt{\frac{\rho}{P_0^S}} = \sqrt{\frac{\rho}{S^{-2}P_0}} = S\tau$$

Scaling of dispersion curves under simple rescaling of the horizon

• Linear waves (1D): assume $u=e^{i(\kappa x-\omega t)}$, substitute this into to the equation of motion

$$\rho \ddot{u} = \int_{-\infty}^{\infty} C(\xi) (u(x+\xi) - u(x)) d\xi$$

so the dispersion curve is determined by

$$\rho\omega^{2}(\kappa) = \int_{-\infty}^{\infty} C(\xi) \left(1 - e^{i\kappa\xi}\right) d\xi$$

Scaling of dispersion curves, ctd.

• Now repeat this using the C^S and set $\xi = S\sigma$:

$$\rho\omega_S^2(\kappa) = \int_{-\infty}^{\infty} C^S(\xi) (1 - e^{i\kappa\xi}) d\xi$$
$$= \int_{-\infty}^{\infty} (S^{-3}C(\sigma)) (1 - e^{i\kappa(S\sigma)}) (Sd\sigma) = S^{-2}\rho\omega^2(S\kappa)$$

hence the dispersion curve scales according to

$$\omega_S(\kappa) = S^{-1}\omega(S\kappa) \to \frac{1}{\tau^S} \text{ as } \kappa \to \infty.$$

Another way to change length scales: Coarsening*

We arbitrarily chose a certain way to rescale the material properties:

$$\mathbf{C}^{S}(\boldsymbol{\xi}) = S^{-5}\mathbf{C}(\boldsymbol{\xi}/S)$$

which implicitly scales the microstructure (S > 1 means "big atoms").

- Now propose an alternative called coarsening.
- Start with a detailed description (level 0).
- Choose a coarsened subset (level 1).
- Model the system using only the coarsened DOFs
- Forces on the coarsened DOFs depend only on their own displacements.
- These forces should be the same as you would get from the full detailed model.

* SS, Intl. J. Multiscale Comp. Engin., 2010 (to appear).

Discussion

• "Automatic" increase in τ as the interaction distance increases suggests that within peridynamics, multiscale in space may imply multiscale in time.

